Related Papers
Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking
Thierry Galli
Current Topics in Membranes and Transport
Chapter 6 Protein Sorting in the Secretory Pathway
1985 •
Enzo Bard
Journal of Molecular Endocrinology
Thyroid-specific inactivation of KIF3A alters the TSH signaling pathway and leads to hypothyroidism
2013 •
Claude Massart
Kinesins, including the kinesin 2/KIF3 molecular motor, play an important role in intracellular traffic and can deliver vesicles to distal axon terminals, to cilia, to nonpolarized cell surfaces or to epithelial cell basolateral membranes, thus taking part in the establishment of cellular polarity. We report here the consequences of kinesin 2 motor inactivation in the thyroid of 3-week-old Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice. Our results indicate first that 3-week-old Pax8(Cre/)(+) mice used in these experiments present minor thyroid functional defects resulting in a slight increase in circulating bioactive TSH and intracellular cAMP levels, sufficient to maintain blood thyroxine levels in the normal range. Second, Kif3a inactivation in thyrocytes markedly amplified the phenotype observed in Pax8(Cre/)(+) mice, resulting in altered TSH signaling upstream of the second messenger cAMP and mild hypothyroidism. Finally, our results in mouse embryonic fibroblasts indicate that Kif3a inactivation in the absence of any Pax8 gene alteration leads to altered G protein-coupled receptor plasma membrane expression, as shown for the β2 adrenergic receptor, and we suggest that a similar mechanism may explain the altered TSH signaling and mild hypothyroidism detected in Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice.
Molecular biology of the cell
Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoforms
2002 •
Mitsuaki Tabuchi
Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3' exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element located in the 3' untranslated region of the mRNA. However, it has been still unknown whether the structural differences between the two DMT1 isoforms is functionally important. Here, we report that each DMT1 isoform exhibits a differential cell type-specific expression patterns and distinct subcellular localizations. DMT1A is predominantly expressed by epithelial cell lines, whereas DMT1B is expressed by the blood cell lines. In HEp-2 cells, GFP-tagged DMT1A is localized in late endosom...
Molecular Interventions
Pulse-Chase in the Light Microscope
2002 •
Friso Postma
Nature cell biology
Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation
2017 •
Andreas Brech
The molecular mechanisms underlying the interdependence between intracellular trafficking and epithelial cell polarity are poorly understood. Here we show that inactivation of class III phosphatidylinositol-3-OH kinase (CIII-PI3K), which produces phosphatidylinositol-3-phosphate (PtdIns3P) on endosomes, disrupts epithelial organization. This is caused by dysregulation of endosomally localized Liver Kinase B1 (LKB1, also known as STK11), which shows delocalized and increased activity accompanied by dysplasia-like growth and invasive behaviour of cells provoked by JNK pathway activation. CIII-PI3K inactivation cooperates with Ras(V12) to promote tumour growth in vivo in an LKB1-dependent manner. Strikingly, co-depletion of LKB1 reverts these phenotypes and restores epithelial integrity. The endosomal, but not autophagic, function of CIII-PI3K controls polarity. We identify the CIII-PI3K effector, WD repeat and FYVE domain-containing 2 (WDFY2), as an LKB1 regulator in Drosophila tissue...
Mechanisms regulating cxcr4 intracellular traffic and polarization in human hepatocellular carcinoma cells: cross-talk with the tgf-b pathway
2015 •
Edgar Cepeda
Mechanisms regulating CXCR4 intracellular traffic and polarization in human hepatocellular carcinoma cells: cross-talk with the TGF-B pathway
Nonrandom Arrangement of DNA-Sequences in Diploid Human-Cells
1992 •
Scott Henderson
AJP: Cell Physiology
Subcellular targeting and function of osteoblast nucleotide pyrophosphatase phosphodiesterase 1
2003 •
James Goding
The ectonucleoside pyrophosphatase phosphodiesterase 1 (NPP1/PC-1) is a member of the NPP enzyme family that is critical in regulating mineralization. In certain mineralizing sites of bone and cartilage, membrane-limited vesicles [matrix vesicles (MVs)] provide a sheltered internal environment for nucleation of calcium-containing crystals, including hydroxyapatite. MV formation occurs by budding of vesicles from the plasma membrane of mineralizing cells. The MVs are enriched in proteins that promote mineralization. Paradoxically, NPP1, the type II transmembrane protein that generates the potent hydroxyapatite crystal growth inhibitor inorganic pyrophosphate (PPi), is also enriched in MVs. Although osteoblasts express NPP1, NPP2, and NPP3, only NPP1 is enriched in MVs. Therefore, this study uses mineralizing human osteoblastic SaOS-2 cells, a panel of NPP1 mutants, and NPP1 chimeras with NPP3, which does not concentrate in MVs, to investigate how NPP1 preferentially targets to MVs. W...
Neoplasia
The Cytoplasmic Domain of proEGF Negatively Regulates Motility and Elastinolytic Activity in Thyroid Carcinoma Cells
2008 •
Aleksandra Glogowska